A new a posteriori error estimate for convection–reaction–diffusion problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A posteriori error estimate for the mixed finite element method

A computable error bound for mixed finite element methods is established in the model case of the Poisson–problem to control the error in the H(div,Ω) ×L2(Ω)–norm. The reliable and efficient a posteriori error estimate applies, e.g., to Raviart–Thomas, Brezzi-Douglas-Marini, and Brezzi-DouglasFortin-Marini elements. 1. Mixed method for the Poisson problem Mixed finite element methods are well-e...

متن کامل

A posteriori error estimator and error control for contact problems

In this paper, we consider two error estimators for one-body contact problems. The first error estimator is defined in terms of H(div)-conforming stress approximations and equilibrated fluxes while the second is a standard edge-based residual error estimator without any modification with respect to the contact. We show reliability and efficiency for both estimators. Moreover, the error is bound...

متن کامل

Residual-based a posteriori error estimate for interface problems: Nonconforming linear elements

In this paper, we study a modified residual-based a posteriori error estimator for the nonconforming linear finite element approximation to the interface problem. The reliability of the estimator is analyzed by a new and direct approach without using the Helmholtz decomposition. It is proved that the estimator is reliable with constant independent of the jump of diffusion coefficients across th...

متن کامل

An a posteriori error estimate for Symplectic Euler approximation of optimal control problems

This work focuses on numerical solutions of optimal control problems. A time discretization error representation is derived for the approximation of the associated value function. It concerns Symplectic Euler solutions of the Hamiltonian system connected with the optimal control problem. The error representation has a leading order term consisting of an error density that is computable from Sym...

متن کامل

Combined a posteriori modelling-discretization error estimate for elliptic problems with variable coefficients

We consider linear elliptic problems with variable coefficients, which may sharply change values and have a complex behavior in the domain. For these problems, a new combined discretization-modeling strategy is suggested and studied. It uses a sequence of simplified models, which approximate coefficients with increasing accuracy. Boundary value problems generated by these simplified models are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2008

ISSN: 0377-0427

DOI: 10.1016/j.cam.2007.04.033